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Steady state properties of a driven granular medium
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Department of Physics, Ochanomizu University, Tokyo 112, Japan
(Received 29 September 1997

We study a two-dimensional granular system where an external driving force is applied to each particle in
the system in such a way that the system is driven into a steady state by balancing the energy input and the
dissipation due to inelastic collisions between particles. The velocities of the particles in the steady state satisfy
the Maxwellian distribution. We measure the density-density correlation and the velocity-velocity correlation
functions in the steady state, and find that they are of power-law scaling forms. The locations of collision
events are observed to be time correlated, and such a correlation is described by another power-law form. We
also find that the dissipated energy obeys a power-law distribution. These results indicate that the system
evolves into a critical state where there are neither characteristic spatial nor temporal scales in the correlation
functions. A test particle exhibits an anomalous diffusion which is apparently similar to the Richardson law in
a three-dimensional turbulent floW$1063-651X98)06810-X]

PACS numbgs): 81.05.Rm, 05.20.Dd, 47.56d, 47.20-—k

[. INTRODUCTION sions for a model system satisfying the above conditions.
The driving force is applied to each particle so that the ex-
Granular media have distinct behaviors from those ofternal energy flows into the system uniformly.
typical solids, fluids, and gasgs—3]. There are two particu- Our main concern is the correlations in the steady state of
larly important features that contribute to the unique properthe granular system, where energy dissipation due to inelas-
ties of granular materials: ordinary thermal fluctuations playtic collision is balanced with the energy input. The spatial
no role because of the mesoscopic size of grains, and tndjstribution of collision events, particle diffusion, density-
interactions between grains are dissipafite Therefore, in ~ density correlation, and velocity-velocity correlation will be
order to maintain the dynamics of granular media in the longnvestigated by simulations. The results show that there are
run, external driving forces are inevitable. Both experimentdl0 characteristic spatial and temporal scales in the correla-
and computer simulations show that the dynamical responséi9n functions, no characteristic energy scale in dissipation,
of granular media to external forces exhibit a wide variety ofand an anomalous diffusion of a test particle.
interesting phenomend—3)]. Traditionally, external energy ~ We admit that the way energy is input uniformly to each
flows into the granular system from the boundaries, either byarticle in our model is difficult to realize in experiments. As
shear{4—6] or by other mean§7—-9. we mentioned above, however, this kind of idealization is
The behaviors of inelastic and elastic systems under theecessary to explore properties inherent to systems with in-
same situation are quite different. Elastic systems, if con€lastic interations, and to clarify the essential difference be-
tacted with a heat bath where energy flows into the systerfiveen granular materials and usual fluids.
from the boundaries, will attain a homogeneous state with a This paper is organized as follows. In Sec. Il we present
uniform temperaturgaverage kinetic energyfield. How-  the model. Numerical results from the model are given in
ever, the local kinetic energy of granular systems exhibits
spatial gradients due to inelastic collision if energy is input
from the boundarief9]. A freely evolving granular medium 0.0017
may have a uniform temperature, but that temperature is timi
dependeni10,11].
A uniform and time-independent temperature is essen 0.0015
tially required by the granular thermodynamics theofies-  E(t)
14], or by any effort to make a comprehensive comparison
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between granular materials and fluids euilibrium Re- 0.0013

cently there have been investigatioris—17 showing the

similarity between the steady states of granular materials an 0-0012

typical fluids at equilibrium. 00011 , [ . , , , ‘

Thus, in order to study the properties of granular media 0 2 4 6 8 10 12 14
free from the nonuniformity of temperature and anisotropy
due to gravity, one needs to introduce an idealized system. In
this paper, we carry out computer simulations in two dimen- FIG. 1. Energy relaxation starting from a random initial con-

figuration for a system witiN=1024,0=0.16, andR=0.8. The

vertical axis is the kinetic energy per particlér(l(v2> with m

*Present address: Department of Physics and Astronomy, Bowl=2). The best fit using Eq(7) is also shown withE(e)=1.21
ing Green State University, Bowling Green, OH 43403. X103, A=4.42<10"*, andb’=0.38.
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FIG. 2. (a) Real time vs total number of collisions for a system
with N=1024 andp=0.16. The restitution coefficients are
=0.5, 0.4, 0.3, and 0.2, respectively, from top to bottgb).Col-
lision rate(y) vs degree of dissipatioa=1—R?. The curve is the
best fit using Eq(8) to the numerical data withyy=505.045,y,
=130.064, ancc=0.635.

Sec. lll, and we close the paper with Sec. IV, which is de- |

voted to discussion.

II. MODEL

We consideN hard disks(particleg of diametero inter-
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FIG. 3. (a) Typical configuration of particles. This graph was
obtained from simulations for system with=1024,p=0.16, and
R=0.2. Arrows represent velocitiegb) Visualization of places

acting via collisions in a two-dimensional square cell of where dissipation has taken place during a time interval of 20 col-

length L with periodic boundary conditions in the andy
directions. During a collision, the relative velocity of two

lisions per particle. When a pair of particles collide, we mark a data
point (¢ ) at the middle point between the centers of the pair. Here

particles in the normal direction is reduced by the restitutiorN=1024,R=0.1, andp=0.16.

coefficientR, while in the tangent direction the collision is
elastic:

Vi =v;i=3(1+R)[A-(v;—v))]n,

1)

V=V +3(1+R)[A-(v;—V))]A,

where primes indicate velocities after the collision, and a
unit vector pointing from the center of thth particle to that
of the jth particle. The loss of energy due to the collision is
given by

SE”=§m(1-R*)[A- (v —v)) 1% )
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FIG. 4. (a) Power spectruniP(f ) of the time-dependent coor-
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FIG. 5. Velocity distribution for system withiN=4096,p
=0.16, andR=0.6. The vertical axis is the number of counts for
velocity square in a bin betweerf andv?+ sv2, with the bin size
Sv?=1.77x1075.

The inelastic collapse singularity was observed in simula-
tions of an inelastic systeff20]. This is caused by the ap-
pearance of an infinite number of collisions between a group
of particles which are spontaneously arranged in a straight
line [20]. We avoid this singularity by a slight modified col-
lision rule, as introduced by Deltour and Barfa6]. At each
collision, the relative velocity of the two particles is first
computed Eg. (1)], and then rotated randomly by less than
5°[10].

The parameters in our systems are the restitution coeffi-
cient R, number of particledN, system size., and average
density(area coverage ratip. The diameter of particles is
related to them byp=mNo?/4L%. We will keep L=1

dinates of dissipation places where collision occurs. The straighthroughout the simulations, and show the results &t

line is the best fit to the numerical data, giviag= 0.49+0.01.(b)
Dependence of the exponesmton R.

wherem is the mass of the particles.

On the other hand, energy is input to the system after eact L . R ,

time period of T in the following way: the velocities are
perturbed instantaneously by a random amount:

Vi=Vit &, )

where primes refer to the velocities after energy input. The 1
components of, &,, and§,, are random numbers distrib-

uted uniformly between- 6V and 6V. The energy input rate
is therefore proportional togV)?/T. The way of adding en-

ergy to the system in Eq3) can remove any macroscopic
flow of the system, since there is no preferable direction

chosen.

A one-dimensional version of the present model was stud- . . . .

ied by Williams and MacKintosh18] with continuous en-

=0.001 andT=0.002 unless stated otherwise. The heating
period of T=0.002 corresponds to adding energy to the sys-
tem about every five collision events fB=0.1.

0.01

0.001 |

0.01 0.1 1 10 100 1000

ergy input. Here the energy is added to the system instanta ¢

neously after each time period ©f Therefore, we are able to
use an event-driven algorithfid9,7] to perform the simula-

FIG. 6. Granular temperatur&,; vs {=[(8V)?/T]/(1-R?).

tions. An event is defined as a change of velocity either byrhe straight line is the best fit to the numerical daigs co¢*, with

collision or by energy input.

Co=4.97x10 % and\=0.65.
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FIG. 7. (a) Density-density correlation functia@,, . (b) Parallel(<¢ ) and perpendicular+) components of velocity-velocity correlation
functions.(c) Energy-energy correlation function. Results are obtained for a systenNwitt024,p=0.16, andR=0.4. The horizontal axis
is in units of particle diametes.

I1l. NUMERICAL RESULTS =1024,p0=0.16, andR=0.8. It is found that the relaxation is
exponential aE(t)=E(»)+[E(0)—E(»)]e V7. We find
that the relaxation time (=2.63 in Fig. 1 is independent of
Starting from any initial configuration the system with the initial state, and is controlled by the model parameters.
dissipation R<1) reaches a steady state in the center of Theoretically, we can derive the energy relaxation equa-
mass frame. Since the energy inpEt. (3)] does not guar- tion as follows. The system increases its energy as a result of
antee conservation of the total momentum, we subtracted thexternal driving[Eqg. (3)] with an amount of
average velocity from the velocity of each particle in order to
remove the motion of the center of mass of the whole sys- . N N N N N )
tem. Thus the velocity is defined in the frame moving with :EZ Vit &) _EZ i 222’1 (&+2vi-§) (4
the center of mass, as was done in R&8].
Figure 1 shows how the average energy per particle rewhile it decreases its energy at a collision according to Eq.
laxes with time toward a steady state for a system Wth (2). The energy change rate is

A. Approach to steady state
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08 ' ' ' ' ' ' collision is more likely to happen in the larg& system.
However, we find from Fig. @) that the collision rate in-
creases as the degree of dissipation increases. Figbye 2
shows the dependence of the collision ratas a function of
degree of dissipatioa=1—R?. We find that the numerical

i data can be fitted using the form

-0.35 H B

-0.4 H

, Y= '}/0+ (1116)(:’ (8)

-0.45

; where the exponentis found to be about 0.63 for the data in

: s Fig. 2. It is evident that the collision rate will divergedfis

‘ l [ \‘ ”“ it equal to 1.

055 HJ l” L Ml ] The increase of collision rate with decreasiRgnay be
linked with the clustering mechanism found in Re#,21].
However, by direct visualization, the density nonuniformity
1 is not as clear as in the situation of the freely evolving granu-
lar medium[4,21]. Figure 3a) is a typical configuration
ber . . . . . . ‘ taken from the simulation. To find any correlation in the
so w0 w10 20 w0 w0 30 40  COllision events, we therefore resort to the following method.
We record the positions where dissipation takes place by,
e.g., taking the middle point’s coordinates between each col-

FIG. 8. Structure factors, (k) for an elastic systemR=1) of liding pair. At each dissipation place, we draw a data point,

N=4096 andp=0.16. The best fit using the form of E{.8) is also \6/1\f/1d by dOIIng TO fﬁr sorr]ne tlme |:1terva}l We. ob:]alndFI(j?)S .
shown withs,=0.55 ands, =1.35x 10"°. e see clearly that there is clustering in the dissipation

places. Note that the clustering is not due to limited data
AE points (or short time observationin fact, there are 20 480
— =aAE*—bAE", (5) points in Fig. 3b) with overlap. We have confirmed this
At observation by longer runs. It is also verified that such a
]plusterlng phenomenon does not exist for an elastic system

-0.6 -

k

wherea andb are constants, depending on the frequency o
energy input, number of particles and collision rate. without dissipation R=1). We observe that the clustering

After averaging over a time interval much longer than thepatterns ch_ange.thew posnpn; and forms as't|me develops.
collision time (which will be defined later Eq. (5) becomes The clustering will be quantitatively analyzed in Sec. Il C.

d_ltE —a'—-b'E 6) C. Time correlation of locations of dissipation
We now determine the time correlation of the locations of
) _— 5 dissipation places. A dissipatioftollision) takes place in
where a’=(zag%)=ga(sV)®, b’=gm(1-R%b, and we spacer(t)=[x(t),y(t)] at timet. We calculate the power
have made use ofv;-§)=0. A steady state WittE(*)  gpectrum ofx(t) and that ofy(t), and find that they are of
=a'/b’ exists for Eq.(6). The time-dependent relaxation is power-law decaying form. Since there is no difference be-
given by tween the spectra of(t) and ofy(t), we average them to
B bt obtain P(f ). Figure 4a) shows the power spectrum f&
E(t)=E(x)+Ae ° ", () =0.1, displaying the form ofP(f )~f~* with «=0.49
+0.01. The nonzero exponent reflects that clustering occurs
during the dynamical process: the places where dissipation
happens are more likely to be the locations for future dissi-
pation. In this figure, the time period corresponding to a
frequency(f) is t=f,,/vf, wherey is the collision rate in
In the steady state the collision rate is constant, indeperthe system. The upper cutoff of frequency js,=1024, and
dent of time. This is in contrast to the time-dependent colli-the collision ratey=2438. This cutoff of frequency in Fig.
sion rate in the freely evolving granular medium where the4(a) corresponds to the time interval between two successive
total number of collisions increases as Iilt,) for homo-  collisions(its inverse is the collision rateBelow that cutoff,
geneous coolind10,11. In our simulations, we count the there is no characteristic time scale in the clustering mecha-
total number(C) of collisions starting from a configuration in nism, as indicated by the power-law scaling. This spectrum
the steady state. Figurg&@ shows that the total collision was obtained from the same process as shown in Fim. 3
number is linear with time for all systems wiR<1. The = We also note that the exponemtdepends on the restitution
slopes of the lines are the collision rates for different valuesoefficientR. As Rincreases to lg decreases to zero. Figure
of R. One would expect that the collision rate should be and(b) shows the dependence of the exponemn the restitu-
increasing function with increasirig, as the velocitythere- tion coefficient. AsR increases, the clustering becomes
fore granular temperature defined bejow larger and the weaker, so that the location of dissipation places becomes

whereA is an integral constant depending on the initial con-
dition.

B. Collision rate
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FIG. 9. (a) Structure factorS,(k). (b) Structure factorS,(k). The power-law decaying exponents g@e=1.39+0.02 andB,=1.40
+0.04 for system wittR=0.1, N=4096, andp=0.16. Straight lines are best fits to the numerical data in the rang&afh 27 to 100. The
length scale corresponding to a wave vedtds 27/k. k=100 corresponds to a length of about. ) Dependence of exponengs (<)
andg, (+) onR.

spatially more uniform. This is consistent with the real spacdrom the uniform and random energy input mechanism. This
means that the Gaussian distribution of velocity is valid for

picture, as shown in Fig.(B).

D. Velocity distribution

any part of the system. In such a situation we can now define

a granular temperatur‘ég=<vi2>, a quantity that is uniform

o , in the system. It should be noted that, if the velocity does not
The velocity distribution is found to be Gaussian for all gatisfies the Gaussian distribution, the variance of the veloc-

the cases. Figure 5 shows a typical distribution of the squargy goes not correspond to the usual temperature but is just

of velocity on a semilogarithmic plot. The linearity indicates jnternal energy. From a statistical physics’ point of view, the

that the velocity satisfies the Gaussian distribution like thegayssian velocity distribution(Maxwellian distribution

We will show in Fig. 1c) that the energy densitje(r)

system, if the momentum enters into the Hamiltonian only
=EiN=1%mvi25(r—ri)] has no spatial correlation, as expectedvia the kinetic energy term, the Gaussian distribution of ve-
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locity is valid irrespective of the potential energy fof22] ol ' ' '
and the average kinetic energy kgT, with kg the Boltz-
mann constant.

A non-Gaussian velocity distribution has been found in
granular materials under shg&3], and in fluidized beds of
granuleq 24]. We also find that only with a uniform energy
input like in the present model, without a uniaxial force like
gravity, can the granular materials have a Gaussian velocity
distribution[25].

In Fig. 6 we illustrate how the granular temperatdig
scales with the energy input rate and the inelasticity of the
particles. We find

Tg(ﬁv,T,R):Cog)\, (9) 0.6

where ¢, is a constant, and=[(8V)?/T]/(1—R?). Here
(8V)?IT is the energy input rate. The exponanis found to
be 0.65-0.01. We obtain this scaling form from simulations 08 . ) , )
of 75 systems witiN=1024 andp=0.16 by exploring the :
three-dimensional parameter spad/(T,R). Here §V sets ¢

the values of 0.001, 0.002, 0.003, 0.005, and 0.00&e

values of 0.0001, 0.0005, and 0.001, a@Rdhe values of o1 T T
0.10, 0.45, 0.63, 0.77, and 0.89. (b) ]

E. Correlations in real space

We have measured the spatial correlation functions by

calculating the quantities: 001 L ]
1 _ _ ]

Con(N=5 f dR([p(RO)~pIlp(R+1,0)=pl), (10) P(6E)
1 -
Cuavﬁ(r)=ﬁde(va(R,t)uB(R+r,t)>, (11) 0001 b _

ceem:% j dR([e(R,1)—el[e(R+r,1)~€]). (12)

wherep(r,t) =_EiN:15[r - ri(t)]Nis the particle density at po- 00001 Lo " Py Y E—
sition r at time t, v, (r)=2;_1vi.(t)d[r—ri(t)] is the
momentum density in thea direction, and e(r,t) SE
N 2 ; - -
=3 zmou{o[r—ri(t)] is the energy densityherev;, is FIG. 10. (a) Energy change + SE) at collision for a process

the « component of the velocity of thith particle at timet,  with N=1024,0=0.16, andR=0.1. (b) Distribution of dissipated
a and B take the values of ory, andr; is the position of the  energyP(SE) for three systems wittN=1024,0=0.16, and dif-
ith particle. () means the time average, and the bar meangerentR (R=0.6, 0.3, and 0.1 from right to lgft
the space average.
From the second rank correlation tensor for the velocity=|r|  From Fig. 7a), we clearly see the long-range correla-
Cy,0,(r), we define its transverse.) and longitudinal(l)  tion in the density fluctuation. For distance less than about

components 200, the correlation is positive, while for larger distance the
o correlation is negative. This is in contrast with the situation
Ci(r)=raf gCy v (1), (13 of elastic system oR=1, where we findC,,(r) is zero for
o all r>0. From Fig. Tb) we can see that both parallel and
CL()=rLal15Cy 0, (M), (14)  perpendicular components of the velocity are correlated at

long range. For a distance aboveos]%he perpendicular ve-

wherer andr, are unit vectors parallel and perpendicular tolocity correlation is negative. The results are different from
the relative displacememt respectively. those for the freely evolving granular mediyrhl], where

For numerical calculations, we first coarse grain the systhere is a characteristic length of vortices determined by the
tem into cells of size of aboutdX 5¢. Figure 7 shows the negative minimum of the perpendicular component of veloc-
plots of correlation functions o€ ,,(r), C(r),C,(r), and ity correlation. Here there is no negative minimumaG(r)
Cedr) vs the distance af. Since the system is isotropic, the for all r's less than half of the system size«£700). The
correlation functions depend only on the absolute value lack of a negative minimum indicates no characteristic



4744 GONGWEN PENG AND TAKAO OHTA PRE 58

10% T T T T

04

10°

02

S(f) s

-0.2
I 10-%

-04

-0.4 -0.2 0 0.2 0.4 10° 10t 10? 10° 104

108 T T T

f

FIG. 11. (a) A trajectory for one marked particle taken from a simulation vtk 1024,0=0.16, andR=0.1. (b) Power spectruns(f )
of the time-dependent coordinates of a marked particle vs frequeocy system withN=1024,0=0.16, andR=0.1. The two lines have
slopes of—4.17 and—1.97, respectively(c) Same agh), but for R=0.8. The two lines have slopes 6f4.16 and—1.93, respectively.

length scale in the system. For the parallel component of 1 " ,

velocity correlation, one sees that long-range correlation is S(K=y f f (p(r)p(r")e ™ (=ydr dr’,

also built up for the whole system. In comparison, we find

that for an elastic system both parallel and perpendicular 1 _

components are zero for amy>0. T_he_se re;t_JIts make us Sv(k):N f I(V(r)-V(r’)e""‘“’r \dr dr’,

speculate that our granular system is in a critical state which

e e ool e Tl where (1) =31 (r—r) and V()=S0 (e ) are
X . : Y the mass density and momentum density, ahdneans the

to detect in the energy fluctuation, which allows us to refer

; . time average. Note that in the above integrals taking’
to the internal energy as the granular temperature, in analogy. . . : . i
) . ill contribute a constant terrfirrespective ok), which will
to the thermodynamics of usual fluids.

be dropped in our calculations in the following, since we are
) ) ] not interested in the self-site correlations. Thus one expects
F. Correlations in reciprocal space that both S,(k) and S,(k) for uncorrelated systemg.g.,
We have also calculated the correlation in the Fourierdeal gasesare zero for nonzerd&. From the simulations
space. The structure factors are defined as with R=1 (for which the energy-input procedure is not ap-

(15
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plied), we obtain thatS,(k) is indeed zero for nonzerk. H. Anomalous diffusion

However, due to the finite size of the partiCles, a small but We have traced the trajectories for some rand0m|y
detectablép_was obtained for nonzeto, which is shown in marked partides_ Figure 13) isa typ|ca| one. We record the
Fig. 8. Letpw,y(r)dV, denote the probability of finding a particle positions(t) =[x(t),y(t)] for a time period of 512
particle indV, given that a particle is idV;; S, can be  collisions per particle, and calculate the power spectra of
rewritten aq22] x(t) and ofy(t) [their average is denoted IS(f )]. Figures
11(b) and 1Xc) showS(f ) for two different values oR. In
1 — ik (6 x) Fig. 11(b), for R=0.1, we see that there are two regimes
S(k=g f dx2f dx;p(wip—1)e"™ 27 (16)  geparated by~ 100 which corresponds to a time period of
about 6d, whereT is the heating period. In the high fre-
quency regimeS(f ) is proportional tof 2, corresponding
to the normal diffusion. Since the heating procedure is ap-
plied randomly as in Eq.3), the diffusive behavior is easily
0, r<o (17) understood in this short time scale regime. Additionally, we
1, r>o, see from Fig. 1(b) that a different behavior exists in the
lower frequency regime, whei®(f ) is found to be propor-
wherer =|x,—X,|, it is straightforward to obtain the form of tional to f~(>"#), with B close to 2. This gives rise to the

Taking into consideration the hard-core exclusion

Wio=

S,(k): mean square displacement
1 ([r(H)=r(0)]?)~t*~. (19
S, (k)= —sg+s;k? (for k<—>, (18
o The scaling region of this anomalous diffusion becomes

shorter as the restitution coefficient increases. This can be

wheres, ands; are o-dependent constants. Figure 8 indeedseen from Fig. 1(c) which corresponds t®R=0.8. The
shows thatS,(k) for small values ok obeys Eq(18). Inthe  power-law scaling in the low frequency regime 8¢f ) is
following we present results after subtraction of this finiteclosely related to the power-law scalings presented in the
(particle size effect for the structure factor of mass density.above subsections. Since the density fluctuation is correlated
Therefore, by definitionS,(k) is zero for nonzerd for  in space in a self-similar manner, as indicated by the power-
elastic systemsR=1). law scaling in Sec. Ill F, the jump of the particle, depending

Since the system is isotropic, we obtain the dependence @n the local density fluctuation, may thus satisfy a self-
the structure factors on the magnitude of the wave vector similar distribution. This has a link with the kg-flight ran-
Let us label the two quantities calculated as described abovdom walk|[26].
ass,(k) ands,(k). Figures 9a) and 9b) show their depen- The anomalous diffusion of Eq19), obtained in two-
dence ork on a log-log plot. The linearity indicates that the dimensional simulations, is apparently similar to the obser-
correlations are of power-law form, indicating no character-vation by Lewis Fry Richardson in 1926 in the fully devel-
istic spatial scales in mass density and velocity density flucoped turbulent flow in three dimensiong26,27).
tuations. The power-law exponentsr;p(k)~k“”l isfoundto  Dimensional analysis gives us the correlation of the Fourier
keep at a constant value irrespectiveRyfand to our best transformation of velocity
estimation 8;=1.42+0.06, while the exponent irs,(k)
~k~ P2 is dependent of the inelasticity. Figur&9shows the (viw )~k 2, (20
dependence gB; and B, on the restitution coefficient. One
should note that the power-law scaling region becomesvith 6=(38—1)/(8+1), which is independent of the di-
shorter aR increases. mensionality. If3=2, we have the Kolmogorov exponent of
5=3. However, the velocity correlation displayed in Fig. 9
for R=0.1 shows thatt=1.4. At present, we do not know
whether this discrepancy is intrinsic or not. It is possible that
Let us now look at scaling in the energy scale. We focusan anomalous exponent like the intermittency exponent in

on all energy dissipation during collisions. The energythree-dimensional turbulent floj28] comes into play.
change after a collision is- SE. Figure 1@a) shows one

time series of dissipated energy in the simulation. Figure
10(b) shows the distributions 0fE counted during a long
time run for three different restitution coefficien®&=0.6, The scaling results obtained in Sec. Il are robust to the
0.3, and 0.1. We see power-law scaling in the energy scal@nergy-input procedure we used. We have verified this by
The upper cutoff of the scalingd) is determined by the using different parameters for energy inpé\M andT), and
requirement that the energy dissipation rateby using a nonperiodic energy-input mechanism. We find
v[3 SEP(SE)d(SE) is equal to the energy input rate that the above results hold also irrespective of the average
(8V3IT), where y is the collision rate. We note that the density, provided that it is in the low density regime. For
exponent forP(SE)~ SE™* decreases aR increases, and relatively high density, the steady state cannot be reached as
the upper cutoff(A) decreases with increasing. For R the particles jam each other in such a way that the system is
=0.1,#=0.91+0.02. AsR approaches 1u decreases to no longer in a “gas” state(i.e., the diffusion constant is
zero. approaching zeno

G. Distribution of dissipated energy

IV. DISCUSSION
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The scaling properties shown in Sec. Il remind us of the(except the system sizassociated with the energy input. In
concept of self-organized criticalittySOQ [29,30. In our this sense the Reynolds number is negligibly small in our
model we do not need to fine tune a control parameter teystem. We have obtained an anomalous diffusion of a test
obtain the scalings in space, time, and energy scales. Thaarticle, which is similar to the Richardson law. However, it
self-organization appears automatically as faRasl. How-  should be noted that our system is in two dimensions, and
ever, there are several important differences. In the commothat scaling properties in two dimensions are quite different
sense of SOC, avalanches propagate through a medium. Tfrem those in three dimensions in ordinary fluid turbulence.
medium is driven into a critical state by two opposite pro-For further theoretical studies for the scalings obtained here,
cesses: external driving and the avalanches’ disturb@ha one might need to take into account a new nondimensional
to threshold instability In our model, there is no avalanche. parametef32] controlled by dissipation due to inelastic col-
Energy is dissipated instaneously by collision. Three prodision.
cesses are responsible for the evolution of the system: exter- In conclusion we have shown by a well-designed model
nal driving, energy dissipation, and self-evolving due to thethat essential differences exist between granular systems and
velocity field. The last factor is lacking in the SOC of the elastic ones. By self-organization our system reaches a criti-
sandpile model. cal state where there are no characteristic spatial and tempo-

Our model is also different from the turbulence of ordi- ral scales in correlations, and no characteristic energy scale
nary fluids[31]. In a fully developed turbulence, there is a in dissipation.
cascade phenomenon which is the origin of scaling behaviors
such_ as Kolmogoroy scaling. The energy is input to the sys- ACKNOWLEDGMENTS
tem in a macroscopic scale, and then transferred into shorter
scales and finally dissipated at a microscopic length scale This work was supported by a Grant-in-Aid from the
due to viscosity. In our model each particle gains kineticMinistry of Education, Science and Culture of Japan. G.P.
energy randomly. Therefore, there is no macroscopic lengtthanks the Japan Society for the Promotion of Science.
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