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Steady state properties of a driven granular medium

Gongwen Peng* and Takao Ohta
Department of Physics, Ochanomizu University, Tokyo 112, Japan

~Received 29 September 1997!

We study a two-dimensional granular system where an external driving force is applied to each particle in
the system in such a way that the system is driven into a steady state by balancing the energy input and the
dissipation due to inelastic collisions between particles. The velocities of the particles in the steady state satisfy
the Maxwellian distribution. We measure the density-density correlation and the velocity-velocity correlation
functions in the steady state, and find that they are of power-law scaling forms. The locations of collision
events are observed to be time correlated, and such a correlation is described by another power-law form. We
also find that the dissipated energy obeys a power-law distribution. These results indicate that the system
evolves into a critical state where there are neither characteristic spatial nor temporal scales in the correlation
functions. A test particle exhibits an anomalous diffusion which is apparently similar to the Richardson law in
a three-dimensional turbulent flow.@S1063-651X~98!06810-X#

PACS number~s!: 81.05.Rm, 05.20.Dd, 47.50.1d, 47.20.2k
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I. INTRODUCTION

Granular media have distinct behaviors from those
typical solids, fluids, and gases@1–3#. There are two particu-
larly important features that contribute to the unique prop
ties of granular materials: ordinary thermal fluctuations p
no role because of the mesoscopic size of grains, and
interactions between grains are dissipative@1#. Therefore, in
order to maintain the dynamics of granular media in the lo
run, external driving forces are inevitable. Both experime
and computer simulations show that the dynamical respo
of granular media to external forces exhibit a wide variety
interesting phenomena@1–3#. Traditionally, external energy
flows into the granular system from the boundaries, either
shear@4–6# or by other means@7–9#.

The behaviors of inelastic and elastic systems under
same situation are quite different. Elastic systems, if c
tacted with a heat bath where energy flows into the sys
from the boundaries, will attain a homogeneous state wi
uniform temperature~average kinetic energy! field. How-
ever, the local kinetic energy of granular systems exhib
spatial gradients due to inelastic collision if energy is inp
from the boundaries@9#. A freely evolving granular medium
may have a uniform temperature, but that temperature is t
dependent@10,11#.

A uniform and time-independent temperature is ess
tially required by the granular thermodynamics theories@12–
14#, or by any effort to make a comprehensive comparis
between granular materials and fluids atequilibrium. Re-
cently there have been investigations@15–17# showing the
similarity between the steady states of granular materials
typical fluids at equilibrium.

Thus, in order to study the properties of granular me
free from the nonuniformity of temperature and anisotro
due to gravity, one needs to introduce an idealized system
this paper, we carry out computer simulations in two dime

*Present address: Department of Physics and Astronomy, B
ing Green State University, Bowling Green, OH 43403.
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sions for a model system satisfying the above conditio
The driving force is applied to each particle so that the
ternal energy flows into the system uniformly.

Our main concern is the correlations in the steady stat
the granular system, where energy dissipation due to ine
tic collision is balanced with the energy input. The spat
distribution of collision events, particle diffusion, densit
density correlation, and velocity-velocity correlation will b
investigated by simulations. The results show that there
no characteristic spatial and temporal scales in the corr
tion functions, no characteristic energy scale in dissipati
and an anomalous diffusion of a test particle.

We admit that the way energy is input uniformly to ea
particle in our model is difficult to realize in experiments. A
we mentioned above, however, this kind of idealization
necessary to explore properties inherent to systems with
elastic interations, and to clarify the essential difference
tween granular materials and usual fluids.

This paper is organized as follows. In Sec. II we pres
the model. Numerical results from the model are given

l-

FIG. 1. Energy relaxation starting from a random initial co
figuration for a system withN51024,r50.16, andR50.8. The

vertical axis is the kinetic energy per particle (1
2 m^v2& with m

52). The best fit using Eq.~7! is also shown withE(`)51.21
31023, A54.4231024, andb850.38.
4737 © 1998 The American Physical Society
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4738 PRE 58GONGWEN PENG AND TAKAO OHTA
Sec. III, and we close the paper with Sec. IV, which is d
voted to discussion.

II. MODEL

We considerN hard disks~particles! of diameters inter-
acting via collisions in a two-dimensional square cell
length L with periodic boundary conditions in thex and y
directions. During a collision, the relative velocity of tw
particles in the normal direction is reduced by the restitut
coefficientR, while in the tangent direction the collision i
elastic:

vi85vi2
1
2 ~11R!@ n̂•~vi2vj !#n̂,

~1!

vj85vj1
1
2 ~11R!@ n̂•~vi2vj !#n̂,

FIG. 2. ~a! Real time vs total number of collisions for a syste
with N51024 and r50.16. The restitution coefficients areR
50.5, 0.4, 0.3, and 0.2, respectively, from top to bottom.~b! Col-
lision rate~g! vs degree of dissipatione512R2. The curve is the
best fit using Eq.~8! to the numerical data withg05505.045,g1

5130.064, andc50.635.
-

f

n

where primes indicate velocities after the collision, andn̂ is a
unit vector pointing from the center of thei th particle to that
of the j th particle. The loss of energy due to the collision
given by

dE25 1
8 m~12R2!@ n̂•~vi2vj !#

2, ~2!

FIG. 3. ~a! Typical configuration of particles. This graph wa
obtained from simulations for system withN51024,r50.16, and
R50.2. Arrows represent velocities.~b! Visualization of places
where dissipation has taken place during a time interval of 20
lisions per particle. When a pair of particles collide, we mark a d
point ~L! at the middle point between the centers of the pair. H
N51024,R50.1, andr50.16.
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wherem is the mass of the particles.
On the other hand, energy is input to the system after e

time period of T in the following way: the velocities are
perturbed instantaneously by a random amount:

vi85vi1ji , ~3!

where primes refer to the velocities after energy input. T
components ofj, jx, and jy , are random numbers distrib
uted uniformly between2dV anddV. The energy input rate
is therefore proportional to (dV)2/T. The way of adding en-
ergy to the system in Eq.~3! can remove any macroscop
flow of the system, since there is no preferable direct
chosen.

A one-dimensional version of the present model was st
ied by Williams and MacKintosh@18# with continuous en-
ergy input. Here the energy is added to the system insta
neously after each time period ofT. Therefore, we are able t
use an event-driven algorithm@19,7# to perform the simula-
tions. An event is defined as a change of velocity either
collision or by energy input.

FIG. 4. ~a! Power spectrumP( f ) of the time-dependent coor
dinates of dissipation places where collision occurs. The stra
line is the best fit to the numerical data, givinga50.4960.01. ~b!
Dependence of the exponenta on R.
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The inelastic collapse singularity was observed in simu
tions of an inelastic system@20#. This is caused by the ap
pearance of an infinite number of collisions between a gro
of particles which are spontaneously arranged in a stra
line @20#. We avoid this singularity by a slight modified co
lision rule, as introduced by Deltour and Barrat@10#. At each
collision, the relative velocity of the two particles is firs
computed@Eq. ~1!#, and then rotated randomly by less tha
5° @10#.

The parameters in our systems are the restitution co
cient R, number of particlesN, system sizeL, and average
density~area coverage ratio! r. The diameters of particles is
related to them byr5pNs2/4L2. We will keep L51
throughout the simulations, and show the results fordV
50.001 andT50.002 unless stated otherwise. The heat
period ofT50.002 corresponds to adding energy to the s
tem about every five collision events forR50.1.

ht

FIG. 5. Velocity distribution for system withN54096,r
50.16, andR50.6. The vertical axis is the number of counts f
velocity square in a bin betweenv2 andv21dv2, with the bin size
dv251.7731025.

FIG. 6. Granular temperatureTg vs z5@(dV)2/T#/(12R2).
The straight line is the best fit to the numerical data,Tg5c0zl, with
c054.9731023 andl50.65.
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FIG. 7. ~a! Density-density correlation functionCrr . ~b! Parallel~L! and perpendicular~1! components of velocity-velocity correlatio
functions.~c! Energy-energy correlation function. Results are obtained for a system withN51024,r50.16, andR50.4. The horizontal axis
is in units of particle diameters.
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III. NUMERICAL RESULTS

A. Approach to steady state

Starting from any initial configuration the system wi
dissipation (R,1) reaches a steady state in the center
mass frame. Since the energy input@Eq. ~3!# does not guar-
antee conservation of the total momentum, we subtracted
average velocity from the velocity of each particle in order
remove the motion of the center of mass of the whole s
tem. Thus the velocity is defined in the frame moving w
the center of mass, as was done in Ref.@18#.

Figure 1 shows how the average energy per particle
laxes with time toward a steady state for a system withN
h
of

the
to
s-

th

re-

51024,r50.16, andR50.8. It is found that the relaxation i
exponential asE(t)5E(`)1@E(0)2E(`)#e2t/t. We find
that the relaxation timet ~52.63 in Fig. 1! is independent of
the initial state, and is controlled by the model paramete

Theoretically, we can derive the energy relaxation eq
tion as follows. The system increases its energy as a resu
external driving@Eq. ~3!# with an amount of

DE15 1
2 (

i 51

N

~vi1ji !
22 1

2 (
i 51

N

vi
25 1

2 (
i 51

N

~ji
212vi•ji ! ~4!

while it decreases its energy at a collision according to
~2!. The energy change rate is
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DE

Dt
5aDE12bDE2, ~5!

wherea andb are constants, depending on the frequency
energy input, number of particles and collision rate.

After averaging over a time interval much longer than t
collision time~which will be defined later!, Eq. ~5! becomes

dE

dt
5a82b8E, ~6!

where a85^ 1
2 aj2&5 1

6 a(dV)2, b85 1
8 m(12R2)b, and we

have made use of̂vi•ji&50. A steady state withE(`)
5a8/b8 exists for Eq.~6!. The time-dependent relaxation i
given by

E~ t !5E~`!1Ae2b8t, ~7!

whereA is an integral constant depending on the initial co
dition.

B. Collision rate

In the steady state the collision rate is constant, indep
dent of time. This is in contrast to the time-dependent co
sion rate in the freely evolving granular medium where t
total number of collisions increases as ln(11t/te) for homo-
geneous cooling@10,11#. In our simulations, we count the
total number~C! of collisions starting from a configuration in
the steady state. Figure 2~a! shows that the total collision
number is linear with time for all systems withR,1. The
slopes of the lines are the collision rates for different valu
of R. One would expect that the collision rate should be
increasing function with increasingR, as the velocity~there-
fore granular temperature defined below! is larger and the

FIG. 8. Structure factorsSr(k) for an elastic system (R51) of
N54096 andr50.16. The best fit using the form of Eq.~18! is also
shown withs050.55 ands151.3531026.
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collision is more likely to happen in the largerR system.
However, we find from Fig. 2~a! that the collision rate in-
creases as the degree of dissipation increases. Figure~b!
shows the dependence of the collision rateg as a function of
degree of dissipatione512R2. We find that the numerica
data can be fitted using the form

g5g01
g1

~12e!c , ~8!

where the exponentc is found to be about 0.63 for the data
Fig. 2. It is evident that the collision rate will diverge ife is
equal to 1.

The increase of collision rate with decreasingR may be
linked with the clustering mechanism found in Refs.@4,21#.
However, by direct visualization, the density nonuniform
is not as clear as in the situation of the freely evolving gra
lar medium @4,21#. Figure 3~a! is a typical configuration
taken from the simulation. To find any correlation in th
collision events, we therefore resort to the following metho
We record the positions where dissipation takes place
e.g., taking the middle point’s coordinates between each
liding pair. At each dissipation place, we draw a data po
and by doing so for some time interval we obtain Fig. 3~b!.
We see clearly that there is clustering in the dissipat
places. Note that the clustering is not due to limited d
points ~or short time observation!. In fact, there are 20 480
points in Fig. 3~b! with overlap. We have confirmed thi
observation by longer runs. It is also verified that such
clustering phenomenon does not exist for an elastic sys
without dissipation (R51). We observe that the clusterin
patterns change their positions and forms as time devel
The clustering will be quantitatively analyzed in Sec. III C

C. Time correlation of locations of dissipation

We now determine the time correlation of the locations
dissipation places. A dissipation~collision! takes place in
spacer(t)5@x(t),y(t)# at time t. We calculate the powe
spectrum ofx(t) and that ofy(t), and find that they are o
power-law decaying form. Since there is no difference b
tween the spectra ofx(t) and of y(t), we average them to
obtain P( f ). Figure 4~a! shows the power spectrum forR
50.1, displaying the form ofP( f ); f 2a with a50.49
60.01. The nonzero exponent reflects that clustering occ
during the dynamical process: the places where dissipa
happens are more likely to be the locations for future dis
pation. In this figure, the time period corresponding to
frequency~f ! is t5 f max/gf, whereg is the collision rate in
the system. The upper cutoff of frequency isf max51024, and
the collision rateg52438. This cutoff of frequency in Fig
4~a! corresponds to the time interval between two succes
collisions~its inverse is the collision rate!. Below that cutoff,
there is no characteristic time scale in the clustering mec
nism, as indicated by the power-law scaling. This spectr
was obtained from the same process as shown in Fig. 3~b!.
We also note that the exponenta depends on the restitutio
coefficientR. As R increases to 1,a decreases to zero. Figur
4~b! shows the dependence of the exponenta on the restitu-
tion coefficient. As R increases, the clustering becom
weaker, so that the location of dissipation places becom
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FIG. 9. ~a! Structure factorSr(k). ~b! Structure factorSv(k). The power-law decaying exponents areb151.3960.02 andb251.40
60.04 for system withR50.1, N54096, andr50.16. Straight lines are best fits to the numerical data in the range ofk from 2p to 100. The
length scale corresponding to a wave vectork is 2p/k. k5100 corresponds to a length of about 8s. ~c! Dependence of exponentsb1 ~L!
andb2 ~1! on R.
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spatially more uniform. This is consistent with the real spa
picture, as shown in Fig. 3~b!.

D. Velocity distribution

The velocity distribution is found to be Gaussian for
the cases. Figure 5 shows a typical distribution of the squ
of velocity on a semilogarithmic plot. The linearity indicate
that the velocity satisfies the Gaussian distribution like
velocity distribution in usual fluids and gases at equilibriu
We will show in Fig. 7~c! that the energy density@e(r )

5( i 51
N 1

2 mvi
2d(r2r i)# has no spatial correlation, as expect
e

re

e
.

from the uniform and random energy input mechanism. T
means that the Gaussian distribution of velocity is valid
any part of the system. In such a situation we can now de
a granular temperatureTg5^vi

2&, a quantity that is uniform
in the system. It should be noted that, if the velocity does
satisfies the Gaussian distribution, the variance of the ve
ity does not correspond to the usual temperature but is
internal energy. From a statistical physics’ point of view, t
Gaussian velocity distribution~Maxwellian distribution!
comes from a very general consideration. In a conserva
system, if the momentum enters into the Hamiltonian o
via the kinetic energy term, the Gaussian distribution of v
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locity is valid irrespective of the potential energy form@22#
and the average kinetic energy iskBT, with kB the Boltz-
mann constant.

A non-Gaussian velocity distribution has been found
granular materials under shear@23#, and in fluidized beds of
granules@24#. We also find that only with a uniform energ
input like in the present model, without a uniaxial force lik
gravity, can the granular materials have a Gaussian velo
distribution @25#.

In Fig. 6 we illustrate how the granular temperatureTg
scales with the energy input rate and the inelasticity of
particles. We find

Tg~dV,T,R!5c0zl, ~9!

where c0 is a constant, andz5@(dV)2/T#/(12R2). Here
(dV)2/T is the energy input rate. The exponentl is found to
be 0.6560.01. We obtain this scaling form from simulation
of 75 systems withN51024 andr50.16 by exploring the
three-dimensional parameter space (dV,T,R). HeredV sets
the values of 0.001, 0.002, 0.003, 0.005, and 0.008,T the
values of 0.0001, 0.0005, and 0.001, andR the values of
0.10, 0.45, 0.63, 0.77, and 0.89.

E. Correlations in real space

We have measured the spatial correlation functions
calculating the quantities:

Crr~r !5
1

N E dR^@r~R,t !2 r̄ #@r~R1r ,t !2 r̄ #&, ~10!

Cvavb
~r !5

1

N E dR^va~R,t !vb~R1r ,t !&, ~11!

Cee~r !5
1

N E dR^@e~R,t !2ē#@e~R1r ,t !2ē#&. ~12!

wherer(r ,t)5( i 51
N d@r2r i(t)# is the particle density at po

sition r at time t, va(r )5( i 51
N v ia(t)d@r2r i(t)# is the

momentum density in thea direction, and e(r ,t)

5( i 51
N 1

2 mv i
2d@r2r i(t)# is the energy density~here v ia is

the a component of the velocity of thei th particle at timet,
a andb take the values ofx or y, andr i is the position of the
i th particle!. ^ & means the time average, and the bar me
the space average.

From the second rank correlation tensor for the veloc
Cvavb

(r ), we define its transverse~'! and longitudinal~i!
components

Ci~r !5 r̂a r̂bCvavb
~r !, ~13!

C'~r !5 r̂'a r̂'bCvavb
~r !, ~14!

wherer̂ and r̂' are unit vectors parallel and perpendicular
the relative displacementr , respectively.

For numerical calculations, we first coarse grain the s
tem into cells of size of about 5s35s. Figure 7 shows the
plots of correlation functions ofCrr(r ), Ci(r ), C'(r ), and
Cee(r ) vs the distance ofr. Since the system is isotropic, th
correlation functions depend only on the absolute valur
ity

e

y

s

y

-

[ur u. From Fig. 7~a!, we clearly see the long-range correl
tion in the density fluctuation. For distance less than ab
20s, the correlation is positive, while for larger distance t
correlation is negative. This is in contrast with the situati
of elastic system ofR51, where we findCrr(r ) is zero for
all r .0. From Fig. 7~b! we can see that both parallel an
perpendicular components of the velocity are correlated
long range. For a distance above 15s, the perpendicular ve-
locity correlation is negative. The results are different fro
those for the freely evolving granular medium@11#, where
there is a characteristic length of vortices determined by
negative minimum of the perpendicular component of vel
ity correlation. Here there is no negative minimum inCi(r )
for all r’s less than half of the system size (L.70s). The
lack of a negative minimum indicates no characteris

FIG. 10. ~a! Energy change (2dE) at collision for a process
with N51024,r50.16, andR50.1. ~b! Distribution of dissipated
energyP(dE) for three systems withN51024,r50.16, and dif-
ferentR (R50.6, 0.3, and 0.1 from right to left!.
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FIG. 11. ~a! A trajectory for one marked particle taken from a simulation withN51024,r50.16, andR50.1. ~b! Power spectrumS( f )
of the time-dependent coordinates of a marked particle vs frequencyf for a system withN51024,r50.16, andR50.1. The two lines have
slopes of24.17 and21.97, respectively.~c! Same as~b!, but for R50.8. The two lines have slopes of24.16 and21.93, respectively.
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length scale in the system. For the parallel componen
velocity correlation, one sees that long-range correlation
also built up for the whole system. In comparison, we fi
that for an elastic system both parallel and perpendic
components are zero for anyr .0. These results make u
speculate that our granular system is in a critical state wh
lacks a characteristic length of correlations. Figure 7~c! indi-
cates that there are no correlations~or that they are too weak
to detect! in the energy fluctuation, which allows us to ref
to the internal energy as the granular temperature, in ana
to the thermodynamics of usual fluids.

F. Correlations in reciprocal space

We have also calculated the correlation in the Fou
space. The structure factors are defined as
of
is
d
ar

ch

r
gy

r

Sr~k!5
1

N E E ^r~r !r~r 8!e2 ik•~r2r8!&dr dr 8,

~15!

Sv~k!5
1

N E E ^V~r !•V~r 8!e2 ik•~r2r8!&dr dr 8,

where r(r )5( i 51
N d(r2r i) and V(r )5( i 51

N vid(r2r i) are
the mass density and momentum density, and^ & means the
time average. Note that in the above integrals takingr5r 8
will contribute a constant term~irrespective ofk!, which will
be dropped in our calculations in the following, since we
not interested in the self-site correlations. Thus one exp
that both Sr(k) and Sv(k) for uncorrelated systems~e.g.,
ideal gases! are zero for nonzerok. From the simulations
with R51 ~for which the energy-input procedure is not a
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plied!, we obtain thatSv(k) is indeed zero for nonzerok.
However, due to the finite size of the particles, a small
detectableSr was obtained for nonzerok, which is shown in
Fig. 8. Let r̄w12(r )dV2 denote the probability of finding a
particle in dV2 given that a particle is indV1 ; Sr can be
rewritten as@22#

Sr~k!5
1

N E dx2E dx1r̄2~w1221!eik•~x22x1!. ~16!

Taking into consideration the hard-core exclusion

w125 H0,
1,

r<s
r .s, ~17!

wherer 5ux22x1u, it is straightforward to obtain the form o
Sr(k):

Sr~k!.2s01s1k2 S for k!
1

s D , ~18!

wheres0 ands1 ares-dependent constants. Figure 8 inde
shows thatSr(k) for small values ofk obeys Eq.~18!. In the
following we present results after subtraction of this fin
~particle! size effect for the structure factor of mass dens
Therefore, by definition,Sr(k) is zero for nonzerok for
elastic systems (R51).

Since the system is isotropic, we obtain the dependenc
the structure factors on the magnitude of the wave vectok.
Let us label the two quantities calculated as described ab
assr(k) andsv(k). Figures 9~a! and 9~b! show their depen-
dence onk on a log-log plot. The linearity indicates that th
correlations are of power-law form, indicating no charact
istic spatial scales in mass density and velocity density fl
tuations. The power-law exponent insr(k);k2b1 is found to
keep at a constant value irrespective ofR, and to our best
estimation b151.4260.06, while the exponent insv(k)
;k2b2 is dependent of the inelasticity. Figure 9~c! shows the
dependence ofb1 andb2 on the restitution coefficient. On
should note that the power-law scaling region becom
shorter asR increases.

G. Distribution of dissipated energy

Let us now look at scaling in the energy scale. We foc
on all energy dissipation during collisions. The ener
change after a collision is2dE. Figure 10~a! shows one
time series of dissipated energy in the simulation. Fig
10~b! shows the distributions ofdE counted during a long
time run for three different restitution coefficientsR50.6,
0.3, and 0.1. We see power-law scaling in the energy sc
The upper cutoff of the scaling~D! is determined by the
requirement that the energy dissipation ra
g*0

DdEP(dE)d(dE) is equal to the energy input rat
(dV2/T), where g is the collision rate. We note that th
exponent forP(dE);dE2m decreases asR increases, and
the upper cutoff~D! decreases with increasingR. For R
50.1,m50.9160.02. As R approaches 1,m decreases to
zero.
t
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e
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H. Anomalous diffusion

We have traced the trajectories for some random
marked particles. Figure 11~a! is a typical one. We record the
particle positionsr(t)5@x(t),y(t)# for a time period of 512
collisions per particle, and calculate the power spectra
x(t) and ofy(t) @their average is denoted byS( f )]. Figures
11~b! and 11~c! showS( f ) for two different values ofR. In
Fig. 11~b!, for R50.1, we see that there are two regim
separated byf ;100 which corresponds to a time period
about 60T, whereT is the heating period. In the high fre
quency regime,S( f ) is proportional tof 22, corresponding
to the normal diffusion. Since the heating procedure is
plied randomly as in Eq.~3!, the diffusive behavior is easily
understood in this short time scale regime. Additionally,
see from Fig. 11~b! that a different behavior exists in th
lower frequency regime, whereS( f ) is found to be propor-
tional to f 2(21b), with b close to 2. This gives rise to th
mean square displacement

^@r ~ t !2r ~0!#2&;t11b. ~19!

The scaling region of this anomalous diffusion becom
shorter as the restitution coefficient increases. This can
seen from Fig. 11~c! which corresponds toR50.8. The
power-law scaling in the low frequency regime forS( f ) is
closely related to the power-law scalings presented in
above subsections. Since the density fluctuation is correl
in space in a self-similar manner, as indicated by the pow
law scaling in Sec. III F, the jump of the particle, dependi
on the local density fluctuation, may thus satisfy a se
similar distribution. This has a link with the Le´vy-flight ran-
dom walk @26#.

The anomalous diffusion of Eq.~19!, obtained in two-
dimensional simulations, is apparently similar to the obs
vation by Lewis Fry Richardson in 1926 in the fully deve
oped turbulent flow in three dimensions@26,27#.
Dimensional analysis gives us the correlation of the Fou
transformation of velocity

^vkv2k&;k2d, ~20!

with d5(3b21)/(b11), which is independent of the di
mensionality. Ifb52, we have the Kolmogorov exponent o
d5 5

3 . However, the velocity correlation displayed in Fig.
for R50.1 shows thatd.1.4. At present, we do not know
whether this discrepancy is intrinsic or not. It is possible th
an anomalous exponent like the intermittency exponen
three-dimensional turbulent flow@28# comes into play.

IV. DISCUSSION

The scaling results obtained in Sec. III are robust to
energy-input procedure we used. We have verified this
using different parameters for energy input (dV andT!, and
by using a nonperiodic energy-input mechanism. We fi
that the above results hold also irrespective of the aver
density, provided that it is in the low density regime. F
relatively high density, the steady state cannot be reache
the particles jam each other in such a way that the syste
no longer in a ‘‘gas’’ state~i.e., the diffusion constant is
approaching zero!.
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The scaling properties shown in Sec. III remind us of t
concept of self-organized criticality~SOC! @29,30#. In our
model we do not need to fine tune a control paramete
obtain the scalings in space, time, and energy scales.
self-organization appears automatically as far asR,1. How-
ever, there are several important differences. In the comm
sense of SOC, avalanches propagate through a medium
medium is driven into a critical state by two opposite pr
cesses: external driving and the avalanches’ disturbance~due
to threshold instability!. In our model, there is no avalanch
Energy is dissipated instaneously by collision. Three p
cesses are responsible for the evolution of the system: e
nal driving, energy dissipation, and self-evolving due to
velocity field. The last factor is lacking in the SOC of th
sandpile model.

Our model is also different from the turbulence of ord
nary fluids @31#. In a fully developed turbulence, there is
cascade phenomenon which is the origin of scaling behav
such as Kolmogorov scaling. The energy is input to the s
tem in a macroscopic scale, and then transferred into sho
scales and finally dissipated at a microscopic length s
due to viscosity. In our model each particle gains kine
energy randomly. Therefore, there is no macroscopic len
od

.
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e

-

e

to
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n
he

-

-
er-
e

rs
s-
ter
le
c
th

~except the system size! associated with the energy input. I
this sense the Reynolds number is negligibly small in o
system. We have obtained an anomalous diffusion of a
particle, which is similar to the Richardson law. However,
should be noted that our system is in two dimensions,
that scaling properties in two dimensions are quite differ
from those in three dimensions in ordinary fluid turbulenc
For further theoretical studies for the scalings obtained h
one might need to take into account a new nondimensio
parameter@32# controlled by dissipation due to inelastic co
lision.

In conclusion we have shown by a well-designed mo
that essential differences exist between granular systems
elastic ones. By self-organization our system reaches a c
cal state where there are no characteristic spatial and tem
ral scales in correlations, and no characteristic energy s
in dissipation.
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